## Page Not Found

Page not found. Your pixels are in another canvas.

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Page not found. Your pixels are in another canvas.

This is a page not in th emain menu

This post will show up by default. To disable scheduling of future posts, edit `config.yml`

and set `future: false`

.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Short description of portfolio item number 1

Short description of portfolio item number 2

We obtain a robust optimization based explanation for why regularized linear regression methods perform well in the face of noise, even when these methods do not produce reliably sparse solutions. We derive tight regularized regression bounds for the corresponding robust problems with convex, positive homogeneous loss functions and Fenchel convex loss functions on Frobenius norm bounded uncertainty sets. And based on the regularized regression bounds, we propose a principled way to choose the regularization parameter λ to balance bias-variance trade-off for the regularized linear regression problem

We develop a discrete optimization formulation to learn a Multivariate Gaussian mixture model (GMM) given access to n samples that are believed to have come from a mixture of multiple subpopulations. The formulation optimally recovers the parameters of a GMM by minimizing a discrepancy measure (either the Kolmogorov–Smirnov or the Total Variation distance) between the empirical distribution function and the distribution function of the GMM whenever the mixture component weights are known.

We develop a novel framework for designing statistical hypothesis tests when given access to i.i.d. samples drawn under the hypothesis. We model the uncertainty in a sample using uncertainty sets based on the Wasserstein distance with respect to the empirical distribution and design tests that maximally separate the two hypotheses using an affine combination of statistics by solving a sample robust optimization problem

We develop specialized proximal gradient based first-order algorithms for the problem of estimating a nonparametric function under a variety of smoothness and shape constraints such as monotonicity, convexity, unimodality and Lipschitz smoothness whenever some prior knowledge about the relationship between the independent and dependent variables is given.

We present two estimators: one based on a trimmed version of the maximum likelihood estimator, and another based on a robust version of a Kolmogorov-Smirnov goodness of fit measure for the problem of estimating parameters of a class of multivariate Gaussian distribution and a mixture of Gaussians from a sample of observations contaminated with possibly arbitrary corruptions. Exploiting problem-specific structure, we develop specialized algorithms and demonstrate that they can solve instances of these problems well beyond the capabilities of existing off-the-shelf commercial solvers.

We propose a holistic framework using Tensor completion and Robust Optimization to prescribe influenza vaccine composition that are specific to a region, or a country based on historical data concerning the rates of circulation of predominant viruses. Through numerical experiments, we show that our proposed vaccine compositions could potentially lower morbidity by 11-14% and mortality by 8-11% over vaccine compositions proposed by World Health Organization (WHO) for Northern hemisphere.

This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!

This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.

This is a description of a teaching experience. You can use markdown like any other post.

This is a description of a teaching experience. You can use markdown like any other post.